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A previous paper in this series,2 hereafter called part I, 
presented results for potential energy hypersurfaces of H4 in 
the three-dimensional subspace of all trapezoids, and discussed 
their relation to 2s + 2s photochemical processes. In the present 
paper we describe results for the four lowest singlet states in 
a three-dimensional subspace of all "triply right" C2v tetra-
hedra (defined below) and discuss their implications for the 
presently poorly understood molecular photochemistry of H2 
and for the understanding of "cross-bonding" in photochemical 
reactions in general. 

Method of Calculation 

The MB method of calculation (minimum basis set sepa­
rately optimized for each state and each geometry, full con­
figuration interaction) and the manner of presenting the results 
are the same as in part I,2 which also discusses the accuracy 
and limitations inherent in the approach. 

The geometries of H4 presently considered are defined in 
Figure 1. The nuclei are labeled A, B, C, and D. The distance 
between A and B is denoted by R \ = AB, that between C and 
D by Ri = CD, and the distance between the midpoints of the 
lines AB and CD is labeled R. The axis connecting these 
midpoints is referred to as z and is perpendicular to both AB 
and CD, A1 = O2 = 90°. The dihedral angle, a, defined by the 
plane containing AB and z and that containing CD and z, is 
90°. In this sense, then, the tetrahedra, ABCD, are triply right, 
in general, they belong to the C2v point group. If R1 = R2, R 
?± 0 and R ^ R\/'V~2the symmetry group is D2d\ MRi 5* R2 
and ?̂ = 0, the symmetry is D2),; if R\ = R2 and R = O, the 
symmetry is D4h, and if R\ = R2,R = Ri/Vl, the symmetry 
is Tj. Since the square (D^h) geometries are special instances 
of trapezoidal geometries, they were already considered in part 
I, and provide an interface between the two sets of results. 

When R\ ^ R2, the nuclei A and B are not equivalent to 
nuclei C and D. Therefore, their respective orbital exponents 
are not required by symmetry to be equal and were allowed to 
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optimize to different values. Even when R\ = R2 (D2d, D^, 
and Td) at which all nuclei are equivalent, lower energies are 
frequently obtained by allowing "symmetry breaking" in the 
wave function, i.e., permitting the exponents of A and B or-
bitals to be different from those of C and D orbitals. This 
freedom was allowed throughout, since discontinuities in po­
tential energy surfaces would otherwise result. The resulting 
wave functions do not always possess irreducible symmetry of 
the D2d, Di,h, or Td group. (See the Discussion for more de­
tail.) 

Graphical Presentation 
The results to be displayed are potential energy hypersur­

faces. Since four dimensions would be required to plot 
E(RiR2R), we present instead a three-dimensional analogy 
to the well-known contour diagrams. For a given electronic 
state, we show a series of nested equipotential surfaces, each 
labeled by its energy in atomic units (Figures 2-5). The energy 
values at specific geometries cannot be read with great accu­
racy from the figures. But, then, there would be little point in 
a very accurate display of rather approximate results, except 
as a benchmark for future comparison with more accurate 
results, which will probably be done at selected points only. The 
surfaces are only approximate because of the limited nature 
of the basis set discussed in part I,2 and because the grid used 
for their construction was relatively sparse, particularly in 
regions which appeared to be smooth or of little interest, in line 
with the general philosophy adopted (about 300 points for each 
state). The main purpose is to display low-energy reaction 
paths, minima, barriers, and avoided crossings and we believe 
that all such features shown in Figures 2-5 are semiquantita-
tively reliable. Details of slopes and absolute energy differences 
between surfaces of differing degrees of ionicity are not reli­
able, particularly those of the excited singlets. 

The coordinate system for plotting the isoenergetic surfaces 
as a function of/J1, R2, and R is the same as in Figure 7 of part 
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Figure 1. The coordinate system and molecular parameters for tetrahedral 
H4. Triply right tetrahedra have 0, = d2 = a = 90°. 

Figure 2. The lowest singlet, So, potential energy hypersurfaces of triply 
right tetrahedral H4. Energies are given in atomic units (au) and distances 
in angstroms (A). 

I:2 the present figures display a prism in the first octant of the 
Rx, Ri, R cartesian system defined by the relations R\, R2, R 
> 0; Ri ^ Ru R, Ri ^ 4 A. Of course, the significance of the 
coordinates is now different from what it was in part I. In 
general, a point in the prism corresponds to a Civ tetrahedron 
of Figure 1. Each point in the ^ = O plane corresponds to a 
rhombus (D2/,). Further, points on the R = 0, Rx = Rj line 
correspond to a square (D4I1), and motion of a point away from 
this line in the R = 0 plane corresponds to distorting the square 
into an increasingly acute rhombus. Each point in the /?i = R2 
plane corresponds to a Did tetrahedron, which can be envis­
aged as two equivalent H2 molecules in "perpendicular" ap­
proach. At any point on the /?i = Ri = RVl line shown in 
Figures 2-5, the distance of the two molecules is such that the 
tetrahedron is regular (Tj). Motion of a point away from the 
regular tetrahedra line, but within the R\ = Ri plane either 
elongates (R > Rx/Vl) or shortens (R < Rx/Vl) the tetra­
hedron, keeping the ends AB and CD equivalent. Motion of 
a point away from the R\ = Ri plane corresponds to making 
the length of the ends AB and CD unequal, but maintaining 

Figure 3. The first excited singlet, Si, potential energy hypersurfaces of 
triply right tetrahedral H4. 

Figure 4. The second excited singlet, S2, potential energy hypersurfaces 
of triply right tetrahedral H4. 

them perpendicular. The planes Rx = 0 and Ri = O correspond 
to coincidence of two nuclei; no energy surfaces intersect these 
planes. Both of these planes as well as the R = 0 and Rx = Ri 
planes are mirror image symmetry planes. Therefore, the 
portion displayed in Figures 2-5 permits visualization of the 
energy surfaces throughout the space within - 4 A < Rx, Ri, 
R < 4 A . 

The coordinate system Rx, Ri, R determines all possible 
triply right tetrahedra as described above. Two other triply 
right tetrahedra may be determined in the same way by al­
lowing the pairs AC and BD or AD and BC to play the role 
previously assigned to AB and CD. That is, e.g., define Rx' = 
AC, Ri = BD, place AC perpendicular to the line, z', joining 
its midpoint with that of BD, define R' as the distance between 
the midpoints, and select the dihedral angle between the plane 
contining AC and z' and the plane containing BD and z' to be 
90°. This results in a tetrahedron (AC, BD). Similarly, ^ 1 " , 
Ri', and R" refer to a tetrahedron (AD, BC). Because the four 
nuclei are equivalent, the energy surfaces for tetrahedra (AC, 
BD) and (AD, BC) look just like those shown in Figures 2-5 
for (AB, CD), except that the axes are labeled differently. The 
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three sets of surfaces are conveniently distinguished by im­
agining them to be colored red, white, and blue, respectively. 
Namely, the red surfaces, for the (AB, CD) tetrahedra, have 
R\ = AB, #2 = CD, and R as the distance between midpoints 
of AB and CD as discussed above. The white surfaces, for the 
(AC, BD) tetrahedra, have/?/ = AC, R2' = BD and R' as the 
distance between midpoints of AC and BD. The blue surfaces, 
for the (AD, BC) tetrahedra, have Rx" = AD, R2" = BC, and 
R" as the distance between midpoints of AD and BC. 

All three spaces have the line of regular tetrahedra in 
common, since here the three pairs of sides simultaneously 
satisfy the triply right condition. A given regular tetrahedron, 
ABCD, can be distorted by holding AB and CD perpendicular 
to the line joining their midpoints, thus moving into the red 
surfaces by increasing or decreasing the distance between AB 
and CD. Alternatively, AC and BD can be held perpendicular 
to the line joining their midpoints, thus moving into the white 
surfaces. Finally, AD and BC can be held perpendicular to the 
line joining their midpoints, thus moving into the blue sur­
faces. 

The lowest singlet states in the subspace of triply right te­
trahedra can be expected to be formed from the combinations 
of two hydrogen molecules in their low-lying states, X1Sg+ 

(ground), b32u
 +(triplet), B1 S11

+ (singlet excited). For brevity, 
we shall refer to these as the X, b, and B states of H2. Several 
additional states follow closely, in particular CTl u , . . . , and 
E1 Sg+ (doubly excited). Of these, only the E state can be de­
scribed at all with a minimum basis set. Since we shall find that 
it correlates with some low-energy states at geometries of H4 

of interest to us, we shall include it in the present consideration, 
although its description in terms of minimum basis set is rather 
inadequate. Results obtained with larger basis sets show that 
the other states (C, D) do not correlate with low-lying states 
of H4 at square geometries. 

The zero-order states which result for H4 upon combination 
of the AB and CD H2 molecules (C2t, symmetry group) are 
XAB'XCD (Ai), bAB'bcD (A2), XAB'BCD (B2), BAB*XCD (BI ) , 
XAB-ECD ( A I ) , EAB-XCD ( A I ) . At D2d geometries, the X A B-
XCD remains Ai, A2 becomes Bi, while Bi and B2 become the 
two degenerate components of an E representation, XAB'ECD 
-I- EAB-XCD is Ai and XAB*ECD - EAB*XCD is B2. At Td 

geometries, the XAB*XCD and the Bi states of D2J become the 
components of the E representation, while the X A B - ECD + 
EAB'XCD remains Ai and the E and B2 states of become T]. 

Figures 2-5 depict results for the four lowest singlet states 
S0-S3 within the space of triply right tetrahedra. The So and 
Si surfaces touch and consist of the lowest A| and A2 surfaces 
which cross. The S2 and S3 surfaces also touch and consist of 
the lowest B2 and second lowest Ai states which cross, at least 
within the prism shown in the figures. The continuation of the 
S2 and S3 surfaces (not shown), obtained by mirror reflection 
in the /^i = R2 plane, are formed by the lowest B] and second 
lowest Ai states which cross. Due to the allowed crossing of 
hypersurfaces having different symmetries, the ground state 
So, first excited state Si, etc., show discontinuities in the slopes 
of their potential surfaces at points where the different sym­
metry states change order. We do not depict the smooth energy 
surfaces belonging to pure symmetry states of the triply right 
tetrahedra, although it might seem more natural. As soon as 
the point group symmetry is lowered sufficiently and the 
crossings avoided, it is the So, Sj, etc., surfaces which corre­
spond with successive states of the distorted tetrahedra. For 
example, by rotating both H2 molecules, AB and CD, through 
the angle a/2 in opposite directions about the line joining their 
midpoints (z) one moves from the present triply right tetra­
hedron (a = 90°) through doubly right tetrahedra (0 < a < 
90°) to the planar trapezoids (a = 0°) of part I.2 The doubly 
right tetrahedra have, in general, C2 symmetry, so that Ai and 
A2 representations of C2v both become A, while Bi and B2 both 

Figure 5. The third excited singlet, S3, potential energy hypersurfaces of 
triply right tetrahedral H4. 

become B and some crossings are avoided; some discontinuities 
then become smoothed as the dihedral angle departs from a 
= 90°. Hence, there is a gradual evolution of the present sur­
faces through those corresponding to all doubly right tetra­
hedra and ultimately into those corresponding to the trapezoids 
of part I. 

States Correlating with the E State of Regular H4 
Tetrahedra 

The Ground State, So. The "red" set of isoenergetic surfaces 
for the ground state of (AB, CD) tetrahedra is depicted in 
Figure 2. 

(i) The Vertical Tube. The low-energy tube at the upper left 
(R large and R] = R2~ 0.76 A) represents two distant H2 

molecules AB and CD oriented as shown in Figure 1, each in 
its ground state (X12g

+). In this region, the symmetry of the 
So state is Ai in the C2,, group. The energy in the tube is lowest 
(-2.293 au) at R = «. IfT?, and R2 are kept equal as R de­
creases, the energy increases very slowly until the separation 
reaches about 1.5 A. Then, it begins to climb steeply. If R\ and 
R2 are permitted to differ as R decreases, the energy increases 
more slowly. The difference is insignificant at large values of 
R, but becomes overwhelming when R reaches less than about 
1.5 A; cf. the cross sections in Figures 6 (R = 2 A), 7 (R = 1 
A), and 8 (R = 0). At any value of /?, it is easier to increase 
only R\ or only R2 from their optimum values than to increase 
both, and this accounts for the wings which protrude from the 
center of the tube toward the cracks which are clearly seen in 
Figure 2 at large R and in Figure 6. Motion from the center 
of the tube into one of the cracks corresponds to the dissociation 
of one of the H2 molecules. This is quite difficult at large values 
of R and requires 0.148 au (93 kcal/mol). As R decreases and 
the energy in the center of the tube increases, this dissociation 
becomes easier (about 0.1 au at R = 1.5 A, and 0 au at R ~ 
1.25 A) and eventually exothermic (Figures 7 and 8). Thus, 
if motion down the tube is forced, the least-energy escape path 
corresponds to dissociation of one of the H2 molecules well 
before R reaches zero. If one is only willing to expend the 
minimum amount of energy and yet proceed all the way to R 
= 0, it is not possible to keep the two dissociated H atoms closer 
than about 3 A apart at best. Thus, an attempt to move one 
ground-state H2 bond through another in perpendicular ori­
entations results in complete dissociation of one of them. 

(ii) The Square Minimum. The minimum at the geometry of 
a 1.42-A square, seen as a quarter-bubble in the lower front 
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Figure 6. Potential energy (in au) contours of the S0 state on the cross 
section through Figure 2 at R = 2 A. 

Figure 7. Potential energy contours of the S0 state on the cross section 
through Figure 2 at R = 1 A. 

of Figure 2, occurs at rather high energy (-2.058 au) and is 
familiar from part I. It is a saddle point with respect to trape­
zoidal distortions discussed in part I. The symmetry of So at 
this geometry is A2 in the C2v symmetry group of the tetra-
hedra of our three-dimensional subspace. Dissociation into four 
H atoms requires only 0.06 au of energy and can be accom­
plished, for example, by increasing the size of the square (see 
part I). It takes only 0.02-0.03 au of energy to climb out of the 
square minimum and proceed in the R = 0 plane directly into 
the bottom of the crack discussed under (i), i.e., to push two 
opposite vertices of the square together and pull the other two 
apart, forming H2 + 2H. The spacing of contour lines in Figure 
2,0.05 au, does not display any information about the best path 
for this transformation, which has not been investigated in 
detail. 

Motion from the square minimum toward larger R values 
in the front plane (.R1 = R2) corresponds to pulling the two 
diagonals of the square apart. Along these paths, energy rises 
above -2.0 au before a Tj geometry is reached. Thus, motion 
from the square minimum to the vertical tube in the front plane 
is most economically achieved by total fragmentation to 4 Ff 
atoms followed by their recombination. 

(iii) The Surface of S0-Sj Touching. The upper left region 
of the space shown in Figure 2, in which the symmetry of So 
is Ai, is separated from the bottom right region, in which the 
symmetry of S0 is A2, by a curved surface which contains all 
points in which the S0 and Sj states touch (are degenerate). 

Figure 8. Potential energy contours of the So state on the cross section 
through Figure 2 at R = 0 A, planar geometries. 

Figure 9. Potential energy contours of the Si state on the cross section 
through Figure 3 at R = 1.0 A. 

At the line of regular Tj tetrahedra, the Ai and A2 states form 
the two components of an E representation. The isoenergetic 
surfaces of So (and Si) states of Figure 2 (and 3) exhibit 
discontinuities in their derivatives where they meet the surface 
of So-S] touching. The lines of cross section of this surface with 
the planes R = 0, 1, and 2 A are shown as dashed lines in 
Figures 6-8. The surface cuts the front plane (R\ = R2) in the 
line of regular tetrahedra (Tj) drawn in full in Figures 2 and 
3. 

The First Excited Singlet State, S]. The "red" set of isoen­
ergetic surfaces for the first excited singlet state, Si of (AB, 
CD) tetrahedra is shown in Figure 3. Departing from the 
surface of So-Si touching removes the degeneracy of So and 
S i, and Si follows the higher energy branch. In the upper left 
region in Figure 3 it has A2 symmetry and in the lower right 
region it has Ai symmetry. In order to imagine the shape of the 
isoenergetic surfaces for the A2 state, one can imagine the 
prisms of Figures 2 and 3 to be solids, cleave them along the 
surface of So-Sj touching, and combine the upper left of Figure 
3 with the lower right of Figure. 2. For the A) state, one needs 
to combine the remaining sections (compare Figures 9 and 10 
with Figures 7 and 8). 

In the upper left section of Figure 3, where the Si state is of 
A2 symmetry, the hypersurfaces represent the energy of two 
distant mutually perpendicular H2 molecules, each in its b3Su

+ 

state, coupled into an overall singlet. This state is repulsive with 
respect to each H2 and an energy profile along a line of con-
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R2 2 

Figure 11. Profile of energy hypersurfaces through Figures 2, 3, and 4 on 
the line of constant R = 0, R2 = 2 A. 

Figure 10. Potential energy contours of the Si state on the cross section 
through Figure 3 at R = 0 A. 

stant R2 and R as a function of R\ corresponds to the disso­
ciation curve of triplet H2 shifted up by the triplet energy of 
the other molecule. As R decreases, the energy profile is dis­
placed to lower energies due to incipient singlet coupling be­
tween orbitals belonging to different molecules. As a result, 
the "triplet dissociation curve" of the energy profile dips below 
-2.0 au for values of Ri around 1.5-2.5 A (see Figure 11, 
which shows the energy profiles vs. R\ with R2 — 2.0 A and R 
= 0). The fang shaped surface shown on the right of Figure 3 
arises when the energy profile dips below —2.00 before it 
touches the So surface (i.e., before the A2 and Ai surfaces 
cross); the thickness of this fang at R = 0, Ri = 2.0 A is about 
0.1 A and is depicted by the small horizontal brace in Figure 
11. 

The Si and S2 energy hypersurfaces also touch in the upper 
left section of Figure 3. This touching is shown in the extreme 
upper portion of the Sj profile of Figure 11, but has been 
omitted in Figure 3. 

In the lower right section of Figure 3, where the Si state is 
of Ai symmetry, it represents two stretched triplet H2 mole­
cules lying approximately side by side in the shape of a dis­
torted square. The energy slopes downhill toward larger 
squares and also toward the surface of So-Si touching. Al­
though we have not attempted to locate the geometry of min­
imum energy on Si, it clearly lies within the fang-like surface 
of Figure 3 and its energy is between —2.00 and —2.05 au in 
our approximation. This minimum does not, however, repre­
sent a bound species. First, the energy may decrease upon 
distortion from the subspace of triply right tetrahedra; second, 
each time the molecular geometry crosses the surface of So-Si 
touching, the electronic state will switch from S1 to So (or from 
S0 to Si); i.e., the symmetry label will remain unchanged, ei­
ther A] or A2. At each point of the S0-Si touching surface 
there is a hole ("funnel" 3) in the S] hypersurface, efficiently 
returning excited molecules to the So ground state. In the usual 
representation of the type shown in Figure 11, the geometry 
of the funnel would appear to correspond to a point. Consid­
eration of our results for the subspace of all triply right tetra­
hedra shows that the structure of a funnel can be much more 
complicated. Thus far, the "space of the funnel" is seen to be 
a two-dimensional surface rather than a single point. However, 
in the complete six-dimensional nuclear configuration space 
of H4 the "space of the funnel" is found to be three-dimen­
sional, since distortion of either angle d\ or angle 62 (but not 
both) from 90° (Figure 1) does not cause the symmetry species 
of Ai and A2 of the C21, group to become identical and thus 
does not remove the So-Sj touching. Since either d\ or B2 can 
be varied, there are actually two three-dimensional "funnel 

n,mi 

< i , n i 

Figure 12. Schematic showing the partitioning of triply right tetrahedra 
H4 geometries into regions with various orderings of states arising from 
the lowest Ti state. 

spaces", one green and one yellow (in the sense of part I), which 
share the two-dimensional surface discussed presently. The 
"bottom" of the funnel may lie somewhere on this two-di­
mensional surface, or else, the funnel is double and has one 
"bottom" in the green and one in the yellow three-dimensional 
"funnel spaces". Consideration of more than one octant in our 
RR1R2 subspace and more than one color (red, blue, white) 
multiplies the number of possible "bottoms" related by sym­
metry. 

States Correlating with the Tj State of Regular H4 
Tetrahedra 

The three states, XAB-BCD (B2), BAB-XCD (BI) , and the 
out-of-phase combination of XAB -ECD and EAB*XCD (AI) (all 
labeled in C2u group) all become degenerate at the line of 
regular tetrahedra (Figures 4 and 5). The subspace of triply 
right tetrahedra is divided into three sections, I, II, and III, by 
surfaces at which S2 and S3 are degenerate (Figure 12). These 
surfaces of crossing all meet at the line of regular tetrahedra. 
The first of them is the Ri = R2 plane, the next two are curved. 
One (I, II) separates sections I and II. It proceeds from the line 
of regular tetrahedra behind and below and cuts the bottom 
plane of the prism (R = 0) in the dashed line shown in Figure 
13 (cf. the discontinuities in Figures 4 and 5). Its intersection 
with the R = 1 A plane is shown in Figure 14. The last surface 
(II, III) separates section II from section HI and runs from the 
line of regular tetrahedra up close to the Ri = R2 plane. It is 
not shown in Figures 4 and 5. In region I, the order of state 
energies is E(Ai) < E(B2) < .E(Bi). In region II, the order is 
£(B2) < £(A0 < E(Bi). In region III, it is E(B2) < E(Bi) < 
.E(Ai). In the front prism formed by reflection in the Ri = R2 
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Figure 13. Potential energy contours of the S2 state on the cross section 
through Figure 4 at R • 0 A. 

Figure 14. Potential energy contours of the S2 state on the cross section 
through Figure 4 at R = 1.0 A. 

plane mirror image regions I', IP, and IIP exist. The state or­
dering in these is the same, except that Bi and B2 labels are 
interchanged. 

In the Ri = R2 plane, £(B2) = E(Bi). In each region, the 
lowest of the three states is S2, the next S3, and the highest S4. 
Figure 4 shows the isoenergetic surfaces for S2, Figure 5 shows 
the surfaces for S3, except that the surfaces for Ai were con­
tinued from region II into the very narrow region HI for clarity, 
although those for Bi should have strictly been used. 

The Second Excited Singlet State, S2. The "red" set of 
isoenergetic surfaces for the second excited state, S2, of (AB, 
CD) tetrahedra is shown in Figure 4. 

(i) The Vertical Tube. In region II of Figure 4, where the 
symmetry is B2, there is a conspicuous tube entering the prism 
at R = 4, Ri =a 0.76, and R2 =* 2.0 A, corresponding to the 
approach of one H2 molecule (AB) in the ground state, X1Sg+, 
toward another (CD) in the excited state B1Su+. Unlike a 
similar approach of two ground state molecules (Figure 2), this 
approach is slightly attractive and leads toward the minimum, 
enveloped by the -1.80 contour, at about -1.82 au near R = 
1.5 and .K1 = 1.0, R2= 1.9 A. Thus, the-1.80 surface forms 
a long narrow neck and body of an amphora ending near R = 
1.0 A. This amphora lies at the left end of a vertical crack 
parallel to the RR2 plane. Higher energy contour surfaces, such 
as E = -1.75 au, grow very large near the end of the bottle and 
cross the Ri = R2 mirror plane into the front half of the prism 
(not shown), where they continue around the mirror image 

Figure 15, Potential energy contours of the S2 state on the cross section 
through Figure 4 at R = 4.00 A. 

amphora describing an approach of (AB) B1 Su
+ toward (CD) 

X1 Sg+. The minima at the ends of these tubes in the space of 
triply right tetrahedra do not represent true minima in the full 
molecular configuration space. They probably connect without 
activation with the H4 excimer state by decrease in the dihedral 
angle a, leading to a trapezoid in which the two original H2 
molecules lie side by side.4 Another way of forming a trapezoid, 
in which the two original H2 molecules now lie across each 
other, is to decrease R, keeping constant R\ and R2, until a 
rhombus is formed, and to distort the rhombus in plane into 
a square in the space of triply right tetrahedra,5 and eventually, 
into a trapezoid. This second path proceeds across an energy 
barrier discussed below. 

If R\ and ^ 2 are allowed to relax while R is decreased be­
yond the bottom of the amphora, .R2 rapidly becomes longer, 
while Ri decreases slightly to 0.76 A (Figures 13-15). This 
process leads to a narrow rhombus when R • 0 is reached. This 
rhombus corresponds to a local minimum in the J? • 0 plane, 
which is not seen in Figures 4 nor 13, since it occurs at /?2 > 
4 A. This part of the subspace was not investigated in detail, 
since Rydberg states, which are not described with our basis 
set, will clearly intervene at these geometries. Overall, a descent 
into the amphora followed by further decrease of R and in­
crease of R2 corresponds to a dissociation of an excited H2 
molecule toward a weakly bound complex in which H+ is 
separated by ground state H2 from H~, as a result of a 
"crossed" collision with a ground state H2 molecule. Re­
gardless of this complication, we see that an attempt to move 
an excited H2 bond through a ground state H2 bond in per­
pendicular orientation results in a nearly complete or perhaps 
complete dissociation of the excited bond, in close analogy to 
the situation found earlier with bonds in the ground state. 

(ii) The Square Minimum. In region I of Figure 4, where the 
symmetry of the S2 state is A] (under the C2„ group), there is 
a minimum at a square geometry having sides close to 1.27 A 
(diagonals Ri = R2= 1.80 A) and energy E = -1.861 au. 
This minimum is familiar from part I2 and lies very near the 
best trapezoidal geometry as well as the best kite geometry.6 

The easiest uphill escape in the subspace of triply right tetra­
hedra lies in the Rx = R2 plane and proceeds toward a tetra-
hedral geometry (front of Figure 4), about 60 kcal/mol uphill, 
where the top of the barrier is reached. Descent into the 
"amphora" follows and results in a gain of about 35 kcal/mol. 
The easiest escape from the square minimum confined to the 
R = O plane proceeds toward a narrow rhombus corresponding 
to a ground state H2 molecule and an H + H - ion pair. Again, 
consideration of Rydberg states would change this. 

(iii) The Front Prism. As mentioned in the introduction, the 
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Figure 16. Potential energy contours for the B2 state on a plane of R = 4.00 
A. The Bi state contours are generated by mirror reflection in the R] = 
/?2 line. 

Figure 17. Potential energy contours for the B2 state on a plane of R = 1.00 
A. The Bi state contours are generated by mirror reflection in the R1 = 
/?2 line. 

isoenergetic surfaces So-S3 shown in Figures 2-5 continue into 
the prism which lies in front of the Ri ~ Ri plane and can be 
obtained by mirroring in this plane. While at geometries in 
regions II and III of Figure 4 the S2 state is of B2 symmetry, 
at mirror image geometries in the front prism it is of Bj sym­
metry. However, the isoenergetic surfaces of the B2 state also 
continue smoothly across the Ri = Ri plane into the front 
prism (not shown in Figure 4), as is clear from the cross sec­
tions shown in Figures 16 and 17, which show energy contours 
for the B2 state regardless of whether it represents S2, S3, S4, 
or an even higher singlet state. A mirror reflection of the 
contours shown for the B2 state in the section where Ri > Ri 
across the Ri = Ri plane back into the region Ri > R\, shown 
as the prism in Figures 2-5, would then give information about 
the B] state in this prism, where it represents S3, S4, or even 
higher states, but these results are not shown. The mirroring 
of unsymmetrical contours of the type shown in Figures 16 and 
17, relating the B2 and Bi states, clearly produces a double 
degeneracy in the Ri = R1 plane, where Bi and B2 form an E 
representation of the D2J group. 

The Third Excited Singlet State, S3. The "red" set of 
isoenergetic surfaces for the third excited singlet state, S3, of 
(AB, CD) tetrahedra is shown in Figure 5. In region I of the 
figure, where the state symmetry is B2 (under Ci1, group), they 
represent a smooth continuation of the sheets enveloping the 
amphora of the S2 state. The "tube" broadens and rises gently 
in energy from the (I, II) surface toward the R = 0 plane, 
where it connects to mirror image surfaces which envelop a 
mirror image amphora in the prism below. The energy in­
creases as the Ri = Ri plane is approached; at the same time, 
the energy of the next higher state Bi (S4) decreases, and the 
two become degenerate in the plane (E representation of the 
Did group). Somewhat lower in energy lies the previously 
discussed state S2, which is of B2 symmetry in the Dn group 
(A] in the C2„ group) in the lower section of the Ri = R2 plane, 
where this plane adjoins region I. At the line of regular tetra­
hedra, this B2 state becomes degenerate with the E state of the 
Did group, and jointly they form the Tj representation of the 
Tj group. Above this line, where the Ri = Ri plane adjoins 
region III, the B2 state of the D2d group lies above the E state 
(Figure 18). In the narrow region III, close to the R{ = R2 
plane, the S3 state is then represented by the higher energy 
component (Bj) and the S2 state by the lower energy compo­
nent (B2), which result when the E state of the D2d group splits 
as symmetry is lowered upon leaving the Ri = R2 plane. Since 
the Bi state rapidly increases in energy as the distance from 
the Ri = R2 plane grows, it soon catches up with the Aj state 
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Figure 18. Profile of energy hypersurfaces vs. R (in A) through Figures 
2, 3, 4, and 5 on the line of constant R\= Rt = 2.00 A, showing the 
crossing of different symmetry states in the Did tetrahedra to produce the 
E and Ti states of the regular tetrahedra. Labels refer to Ci1, symmetry 
group (those in parentheses refer to Did)-

(corresponding to the B2 state of the Did group). This occurs 
at the crossing surface (II, III) shown in Figure 12, but not 
apparent in Figure 5. Thereafter, in region II, the third excited 
singlet state S3 has Ai symmetry. The discontinuity which 
should occur in the S3 surfaces in Figure 5 upon crossing the 
(II, III) surface is not shown, since the visualization is too 
difficult, and the difference insignificant. 

The shape of the S3 isoenergetic surfaces in region II (Ai 
symmetry) is similar to that of the S2 surface (Figure 5). The 
vertical tube corresponds to the approach of one H2 molecule 
(AB) in the ground state, X1Sg+, toward another (CD) in the 
doubly excited state E12g

+. Since the E state is described very 
poorly in the minimum basis set, no importance can be at­
tached to the details of the shapes. The one significant feature 
is the downhill slope with decreasing R, due to correlation of 
the Ai state with the "excimer" state at square geometries of 
part II. Because of the crossing of the S2 and S3 surfaces at the 
(I, H) surface, the downhill slope in S3 in region II continues 
downward in Figure 5 only until this surface is reached, simi­
larly as its downhill slope in region I continued upward only 
until the same surface was reached. Similarly as was the case 
for the surfaces So and Si, the crossing of the Ai and B2 states 
then forms a "ridge" in the S2 surface and a "funnel" in the 
S3 surface. The points of this funnel form a two-dimensional 
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surface in the subspace of triply right tetrahedra, but in the full 
six-dimensional space of H4 the funnel again consists of two 
three-dimensional "funnel spaces" which share the two-di­
mensional surface (I, II). At Td geometries, additional com­
plications arise due to the third component of the Tj state. 

Discussion 
Wave Functions. The VB wave function of the lowest Ai 

state corresponds predominantly to a pair of covalent bonds 
A-B and C-D. Interactions A-C, A-D, B-C, and B-D are 
predominantly antibonding. As two 0.76-A long H2 molecules 
are brought together in a perpendicular arrangement, the latter 
interactions gradually increase and the energy rises. On the 
other hand, the VB wave function of the lowest A2 state con­
tains net A-B and C-D antibonding and net A-C, A-D, B-C, 
and B-D bonding, and this state correlates with two triplet H2 
molecules A-B and C-D. Its energy decreases as the two H2 
molecules approach, since the bonding interactions are 
strengthened. When the geometry of a regular tetrahedron is 
reached, the bonding and antibonding interactions in Ai and 
A2 approximately balance and both states are degenerate. As 
the tetrahedron is flattened further, until finally a square is 
reached, the antibonding peripheral interactions A-C, A-D, 
B-C, and B-D in the Ai state prevail over the bonding diagonal 
interactions A-B and C-D and the D state of the square dis­
cussed in part I2 is reached. At the same time, the bonding 
peripheral interactions in the A2 state prevail over the anti-
bonding diagonal interactions and the lower G state of the 
square discussed in part I2 is reached. This accounts in an in­
tuitive manner for the shapes of the So and Si surfaces, in 
particular for the reluctance of the two crossed H2 molecules 
to proceed to the square geometry, for the tendency of the Si 
state to dissociate to H atoms (each triplet H2 molecule is re­
pulsive), for the existence of a local minimum in the So state 
at square geometry, in the subspace of triply right tetrahedra, 
and for the ease with which the Si state at square geometry 
distorts toward a tetrahedron. The very weakly bonded "fang" 
in the Si surface appears to be due to slight domination of 
peripheral bonding over diagonal antibonding if the diagonals 
are long enough. 

The VB wave function of the B2 and Bi states corresponds 
predominantly to a combination of a ground state with a singly 
excited (zwitterionic) H2 molecule. In the former, the excita­
tion resides on the longer molecule; in the latter, on the shorter 
one. At small R \ and R2, it is better to place excitation on the 
longer molecule and B2 lies below Bj. The situation is reversed 
for larger values of R\ and R2- This is easily understood: once 
the ground state H2 molecule is about completely dissociated, 
its length has very little effect on its energy. At these lengths, 
the longer excited H2 molecule is still far from dissociated and 
making it shorter and thus closer to equilibrium bond length 
saves energy. 

When an H4 system in its S2 state proceeds down the "am­
phora", energy decreases by about 5 kcal/mol. This can be 
attributed to contributions from charge-transfer structures in 
which an electron is transferred from the shorter to the longer 
H2 molecule. In the perpendicular approach, there is no sta­
bilization by exciton splitting as there was in the trapezoidal 
approach of part I;2 there, the stabilization was much larger 
(26 kcal/mol). When the distance of the two crossed inter­
acting molecules is decreased beyond 1.5 A or so, the energy 
increases steeply, mostly due to electron-electron repulsion. 

The Ai state, corresponding to a doubly excited H2 molecule 
interacting with a ground H2 molecule, is represented by very 
similar zwitterionic VB structures as the B2 state. However, 
its symmetry allows it to correlate directly with the energeti­
cally favorable excimer state at square geometries, so that it 
crosses the B2 state at the geometry of a regular tetrahedron 
and becomes the S2 state. As the square geometries are ap­

proached, there is an interaction of the zero-order zwitterionic 
A] wave function of this excited state with the zero-order co­
valent A) wave function of the Si state, resulting in consider­
able admixture of ionic character into the latter in accordance 
with the discussion in part I.2 

Symmetry Breaking. As pointed out in the section, Method 
of Calculation, at D2d, D^, or Td geometries the full CI so­
lutions in the minimum basis set frequently do not possess ir­
reducible symmetry of the group when full freedom is allowed 
for orbital exponent optimization (exponents of A and B or-
bitals are different from those of C and D orbitals). Such 
"symmetry breaking" for a constrained wave function is well 
known in SCF calculations, but has not been previously ob­
served for full CI calculations as far as we are aware. We be­
lieve that the physical reasons for the symmetry breaking in 
our case are the great energy difference between a single f and 
double f level of approximation to the true wave function, the 
closeness of two states of appropriate irreducible symmetries, 
and the similarity of their optimized double f exponents. The 
occurrence of symmetry breaking implies that the average 
energy of the two symmetry-adapted components which can 
be projected out of the broken symmetry solution, and which 
represent double f approximations to the lowest two states of 
appropriate irreducible symmetries, lies below the single f 
approximation to the lower of these states. The broken sym­
metry exponents can be said to be optimized for neither of the 
two symmetry-adapted components separately, but represent 
the best compromise choice for both states simultaneously at 
the double f level. Therefore, when the separately fully opti­
mized double f exponents for the two states in question lie close 
to each other, symmetry breaking at the single f level is fa­
vored. 

Photochemical Processes in H4. Until more of the six-di­
mensional space of H4 is mapped out, it is difficult to make 
predictions for the course of photochemical reactions involving 
this system. Nevertheless, the present results, combined with 
those obtained in part I for excimer formation, strongly suggest 
a rationalization of the observed7'8 efficient quenching of ex­
cited (B1Su+) H2 by ground state H2. As discussed in part I, 
it appears most likely that an excimer H4*, a species in the 
second excited singlet state of H4, is formed first. Internal 
conversion into the almost degenerate lowest excited singlet 
Si could be efficient. A dissociation of square H4 in the S] state 
into 4 H by increasing the square size appears possible and was 
already discussed in part I. The present results suggest an even 
more facile path, namely return to So through the "funnel" of 
S0-Si touching. Because of the large dimensionality of the 
funnel already discussed above, this could occur along a variety 
of paths which all involve diagonal bonding in the square H4 
array. The likely products are either H2 + 2H, or H2 -I- H2. It 
is, of course, possible that the H2 formed might be so hot as to 
further dissociate into 2H. At any rate, one only needs to 
postulate a rapid conversion of the S2 excimer to the almost 
degenerate Si state and an efficient mechanism for loss of 
electronic excitation by the latter becomes available. 

Extrapolation to Larger Molecules. While details of the 
shape of potential energy hypersurfaces for H4 are clearly not 
transferable to other four-electron four-orbital systems, there 
is little doubt that the propensity for diagonal bonding in the 
Si state of a pericyclic array of 4JV interacting AO's containing 
four electrons, due to a (possibly avoided) correlation of the 
Si state with S0 state of the product along this path, is inde­
pendent of the exact nature of the system. This then suggests 
that molecules which find themselves in the pericyclic mini­
mum in the Si surface, discussed in detail for the first time by 
van der Lugt and Oosterhoff9 and more recently in part I,2 can 
not only decay to So at the cyclic geometry and subsequently 
proceed to the ordinary 2s + 2s product, but, in competition 
to this process, could also first establish diagonal bonding in 
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the Si state if this is sterically feasible. Such a change in ge­
ometry takes them to the "cross-bonding" funnel investigated 
in this paper. Perhaps more important, the "cross-bonding" 
funnel might be accessible from starting points other than a 
4iV pericyclic array, at which competing Si -*• So return to the 
ground state probably is quite efficient. In the present highly 
symmetrical case, the SQ and Si states actually touched at the 
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funnel geometry, so that return to So would be fully efficient 
(the return to So occurs as soon as the funnel is reached). In 
more typical cases of lower symmetry, the touching will usually 
be avoided, but the same type of products ought to result. For 
example, starting with the s-cis conformer of 1,3-butadiene (I), 
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formation of 1,3-biradicals of the type II appears quite plau­
sible. The ultimate fate of the biradicals might be return to the 
starting material or to its cis-trans isomer, formation of a bi-
cyclobutane, methylenecyclopropane, or methylcyclopropene. 
At this time, this proposal is rather speculative. Products of this 
type are well known to result from irradiation of dienes, but 
are usually believed and in many cases known10,1' to originate 
in the s-trans conformer of the diene. A different mechanism 
involving twisting around one of the terminal C=C bonds has 

been proposed for their formation.10-12 A more recent alter­
native suggestion,13 that the excited s-trans conformer of the 
diene (III) twists around its 2,3 bond and relaxes into a ge­

ometry with two 1,3 overlaps (IV) similar to our "cross-
bonding" funnel geometry, where it presumably returns to the 
So surface to produce a bicyclobutane and/or cyclopropenes, 
is more in line with the present arguments. Our results indicate 
in simple terms why such a "cross-bonding" or "tetrahedral" 
geometry ought to be energetically favorable in the Si state 
and why it should return the molecule rapidly to the So state. 
However, no definitive conclusions can be drawn at this time, 
and before we can profitably discuss the nature of the photo­
chemical processes for the s-trans isomer, additional subspaces 
of H4 need to be mapped (parallelograms, etc.). Note also that 
the present model only allows us to analyze the case of disro-
tatory ring closures. It is likely, however, that an even number 
of conrotations would not change the results. 

In summary, then, the present results for the subspace of 
triply right tetrahedra of H4 suggest some possibilities for 
analogous processes in larger molecules, but additional work 
is clearly required. 

Acknowledgment. Support of this work by the National 
Science Foundation (GP-37551) and by grants of computer 
time received from the Research Committee of the University 
of Utah and from Washington State University are gratefully 
acknowledged. One of us (W.G.) expresses his thanks to 
NATO for a postdoctoral fellowship. 

References and Notes 

(1) (a) NATO Postdoctoral Fellow; (b) University of Utah; (C) Washington State 
University. 

(2) W. Gerhartz, R. D. Poshusta, and J. Michl, J. Am. Chem. Soc, 98, 6427 
(1976). 

(3) J. Michl, MoI. Photochem., 4, 243, 257 (1972); Top. Curr. Chem., 46, 1 
(1974); PureAppl. Chem., 41, 507 (1975). 

(4) This trapezoidal geometry lies in the "red space" of part I. 
(5) This square geometry lies in the red space of triply right tetrahedra at the 

line of Ri = R2, R = 0 in the lower center of Figure 4. At the same time 
it lies in the intersections of the blue and white trapezoidal subspaces of 
part I. 

(6) J. Michl and R. D. Poshusta in "The Exciplex", M. Gordon and W. R. Ware, 
Ed., Academic Press, New York, N.Y., 1975, p 145. 

(7) E. H. Fink, D. L. Akins, and C. B. Moore, J. Chem. Phys., 56, 900 (1972); 
E. H. Fink, P. Hafner, and K. H. Becker, Z. Naturforsch. A, 29, 194 
(1974). 

(8) I. N. Knyazev, V. S. Letokhov, and V. G. Movshev, IEEEJ. Quantum Elec­
tron., QE-11, 805(1975). 

(9) W. Th. A. M. van der Lugt and L. J. Oosterhoff, J. Am. Chem. Soc., 91, 6042 
(1969). 

(10) W. G. Dauben and J. S. Ritscher, J. Am. Chem. Soc, 92, 2925 (1970). 
(11) R. B. Reinarz and G, J. Fonken, Tetrahedron Lett., 441 (1974). 
(12) V. Bonacic-Koutecky, P. Bruckmann, P. Hiberty, J. Koutecky, C. Leforestier, 

and L. Salem, Angew. Chem., Int. Ed. Engl., 14, 575 (1975). 
(13) M. Bigwood and S. Boue, J. Chem. Soc, Chem. Commun., 529 (1974). 

Gerhartz, Poshusta, Michl / Potential Energy Hyper surfaces for Ht, 


